Enrollment No:	Exam Seat No:				
C.U.SHAH UNIVERSITY					
	Summer-2015				
Subject Code: 4TE03EMT1	Subject Name: Engineering Mathematics - III				
Course Name: B.Tech	Date :4/5/2015				
Semester:3	Marks: 70				
	Time:02:30To5:30				

Instructions:

(B)

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q-1 (A) Define: Laplace Transform.

SECTION - I

[01]

[02]

[02]

[07]

- Find $L\{t^7\}$
- (C) State and prove first shifting theorem.
 - (D) Obtain Newton-Raphson formula to find $\frac{1}{N}$ where N is positive integer. [02]
- Q-2 (A) Obtain Fourier series for 2π periodic function $f(x) = \begin{cases} -\pi & ; \ 0 < x < \pi \\ x \pi & ; \ \pi < x < 2\pi \end{cases}$ [07]

Hence, deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$

(B) Obtain Fourier series up to first harmonic for the following table:

X	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$	
У	0	9	14	17	18	11	
OP							

4-5

- Q-3 (A) Expand $f(x)=e^x$ as a Fourier series in the interval (- a,a). [07]
 - (B) Find a root of $x^3 2x 5 = 0$ correct to three decimal places, using Bisection [07] method.

Find
$$L(te^t sin2tcost)$$
. [05]

Q-4 (A)

(B) Find a real root of the equation $\cos x = 3x - 1$ correct to three decimal places by [05] using Newton-Raphson method.

(C) (i) Find
$$L\{t^5e^{5t}\}$$
 (ii) Find $L^{-1}\left\{\frac{1}{(s^2+1)(s-1)}\right\}$ [04]

OR

Q-5 (A) Find a root of $xe^x - 2 = 0$ correct to two decimal places, using Regula-Falsi method. [05]

(B) By using the method of Laplace transform, solve [05] $(D^3 + 3D + 2)y = 1 - e^{2t}, y(0) = 1 \text{ and } y'(0) = 0.$ (C) Find $L^{-1}\left[\frac{s+1}{(s-2)(2s+1)(s-3)}\right].$ [04]

SECTION - II

Q-1 (A) Find order and degree of differential equation
$$\left(\frac{d^2y}{dx^2}\right)^5 - 4\left(\frac{dy}{dx}\right)^2 + 2y = 0$$
 [01]

- (B) Find the complimentary function of $(D^2 + 16)y = xsinx$ [02]
- (C) Find the particular integral of $(D-3)y = e^{5x}$ [02]
- (D) Form the differential equation by eliminating the arbitrary constants from the [02] equation z = ax + by.

Q-2 (A) Solve the differential equation $(D^2 + 2D + 1)y = 4\sin 2x$

(B) Solve
$$(D^2 + 3D + 2)y = e^{e^x}$$
 [05]

(C) Solve the differential equation $\frac{d^2y}{dx^2} + y = cosecx$ using method of variation of [04] parameters.

OR

Q-3 (A) Solve
$$(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}$$
. [05]

(B) Solve
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = \frac{12 \log x}{x^2}$$
. [05]

(C) Solve
$$(D^2+1)y = \sec x$$
. [04]

Q-4 (A) Solve
$$yz \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = yz.$$
 [05]

(B) Solve
$$\frac{\partial^2 z}{\partial y^2} = z$$
 if $y = 0, z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. [05]

(C) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \cosh x \sin y.$$
 [04]

OR

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$$
, where $u(x, 0) = 6e^{-3x}$.

(B) Obtain three possible solutions of the wave equation
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$
. [05]

(C) Solve
$$\frac{\partial^2 u}{\partial x^2} - 4 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0.$$
 [04]

[05]