\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Name:Engineering Mathematics - III
Date :4/5/2015
Marks: 70
Time:02:30To5:30

Subject Code: 4TE03EMT1
Course Name: B.Tech
Semester:3

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION - I

Q-1 (A) Define: Laplace Transform.
(B) Find $L\left\{t^{7}\right\}$
(C) State and prove first shifting theorem.
(D) Obtain Newton-Raphson formula to find $\frac{1}{N}$ where N is positive integer.

Q-2 (A) Obtain Fourier series for 2π periodic function $f(x)= \begin{cases}-\pi & ; 0<x<\pi \\ x-\pi & ; \pi<x<2 \pi\end{cases}$
Hence, deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}$
(B) Obtain Fourier series up to first harmonic for the following table:

x	0	$\frac{\pi}{6}$	$\frac{2 \pi}{6}$	$\frac{3 \pi}{6}$	$\frac{4 \pi}{6}$	$\frac{5 \pi}{6}$
y	0	9	14	17	18	11

Page 1 of $\mathbf{3}$

Q-3 (A) Expand $f(x)=e^{x}$ as a Fourier series in the interval (-a,a).
(B) Find a root of $x^{3}-2 x-5=0$ correct to three decimal places, using Bisection [07] method.

Find $L\left(t e^{t} \sin 2 t \cos t\right)$.
Q-4 (A)
(B) Find a real root of the equation $\cos x=3 x-1$ correct to three decimal places by using Newton-Raphson method.
(C) (i) Find $L\left\{t^{5} e^{5 t}\right\}$ (ii) Find $L^{-1}\left\{\frac{1}{\left(s^{2}+1\right)(s-1)}\right\}$

OR

Q-5 (A) Find a root of $x e^{x}-2=0$ correct to two decimal places, using Regula-Falsi method.
(B) By using the method of Laplace transform, solve
$\left(D^{3}+3 D+2\right) y=1-e^{2 t}, y(0)=1$ and $y^{\prime}(0)=0$.
(C) Find $L^{-1}\left[\frac{s+1}{(s-2)(2 s+1)(s-3)}\right]$.

SECTION - II

Q-1 (A) Find order and degree of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{5}-4\left(\frac{d y}{d x}\right)^{2}+2 y=0$
(B) Find the complimentary function of $\left(D^{2}+16\right) y=x \sin x$
(C) Find the particular integral of $(D-3) y=e^{5 x}$
(D) Form the differential equation by eliminating the arbitrary constants from the equation $z=a x+b y$.

Q-2 (A) Solve the differential equation $\left(D^{2}+2 D+1\right) y=4 \sin 2 x$
(B) Solve $\left(D^{2}+3 D+2\right) y=e^{\mathrm{e}^{x}}$
(C) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ using method of variation of parameters.

OR

Q-3 (A) Solve $\left(D^{2}+4 D+4\right) y=\frac{e^{-2 x}}{x^{2}}$.
(B) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=\frac{12 \log x}{x^{2}}$.
(C) Solve $\left(D^{2}+1\right) y=\sec x$.

Q-4 (A) Solve $y z \frac{\partial z}{\partial x}+x z \frac{\partial z}{\partial y}=y z$.
(B) Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$ if $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.
(C) Solve $\frac{\partial^{z_{z}}}{\partial x \partial y}=\cosh x \sin y$.

OR

Q-5 (A) Using method of separation of variables, solve

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, \text { where } u(x, 0)=6 e^{-3 x} \tag{05}
\end{equation*}
$$

(B) Obtain three possible solutions of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$.
(C) Solve $\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$.
C. U. SHAH UNIVERSITY

